Post-hoc predictive uncertainty quantification: methods with applications to electricity price forecasting

Margaux Zaffran — June 25, 2024 — Ph.D. defense

<u>Ph.D. advisors</u> Aymeric Dieuleveut Julie Josse Olivier Féron Yannig Goude

Reviewers

Pierre Pinson Étienne Roquain **Examiners**

Emmanuel Candès Florence Forbes Éric Moulines Aaditya Ramdas

Jury members

Hourly day-ahead market prices (between producers and suppliers)

To which extent are they forecastable?

 \hookrightarrow forecasts errors no lower than 10% of the realized price!

Forecasting French electricity spot prices with confidence

aciic

New goal:

Quantify predictive uncertainty with:

- Theoretically grounded tools
- Light assumptions on the underlying data distribution
- Guarantees agnostic to the prediction algorithm

 ~> Post-hoc approach (i.e. no modification of the existing operational pipeline)

goal

Time series

 \triangleright Temporal structure (trend, seasonality, dependence, etc.)

 \triangleright Non-stationarity

Missing values

Improve forecasts by leveraging the *emergence of open data platforms* (ENTSO-E Transparency, Eco2Mix, etc.)

 \triangleright Missing covariates by aggregating different data sources

Approach: black-box post-processing of existing probabilistic forecasts

Important literature on intervals forecast, emerging from the electrical application (Hong et al., 2016; Hong and Fan, 2016), but also from renewable energies and meteorology (Wan et al., 2014; Wang et al., 2017).

Wide range of models, mainly based on the pinball loss, such as

- Quantile Random Forests,
- Quantile Generalized Additive Models,
- Quantile Regression Averaging,
- intervals from Gaussian Auto-Regressive models with exogenous variables,
- Deep Learning Probabilistic,
- etc. \rightsquigarrow in practice uncalibrated.
 - Black-box post-processing of available probabilistic forecasts
 - Post-hoc approach: plug-in on top of any of these models
 - ▶ Guarantees: in finite sample and distribution-free

Quantifying predictive uncertainty

- $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ random variables
- *n* training samples $(X^{(k)}, Y^{(k)})_{k=1}^{n}$
- Goal: predict an unseen point $Y^{(n+1)}$ at $X^{(n+1)}$ with confidence
- How? Given a miscoverage level $\alpha \in [0,1]$, build a predictive set \mathcal{C}_{α} such that:

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \geq 1 - \alpha, \qquad (\text{validity})$$

and C_{α} should be as small as possible, in order to be informative¹.

- Construction of the predictive intervals should be
 - agnostic to the model²
 - agnostic to the data distribution
 - valid in finite samples

¹Analogous to Gneiting et al. (2007).

²The underlying model can be any probabilistic model tailored for the application task at hand.

Conformalized Quantile Regression (CQR)³

³Romano et al. (2019), Conformalized Quantile Regression, NeurIPS

³Romano et al. (2019), Conformalized Quantile Regression, NeurIPS

$$\hookrightarrow S^{(k)} := \max\left\{\widehat{\mathsf{QR}}_{\mathsf{lower}}\left(X^{(k)}\right) - Y^{(k)}, Y^{(k)} - \widehat{\mathsf{QR}}_{\mathsf{upper}}\left(X^{(k)}\right)\right\}$$

³Romano et al. (2019), Conformalized Quantile Regression, NeurIPS

³Romano et al. (2019), *Conformalized Quantile Regression*, NeurIPS

Exchangeability

$$(X^{(k)}, Y^{(k)})_{k=1}^{n}$$
 are exchangeable if for any permutation σ of $\llbracket 1, n \rrbracket$ we have:
 $(X^{(1)}, Y^{(1)}), \dots, (X^{(n)}, Y^{(n)}) \stackrel{d}{=} (X^{(\sigma(1))}, Y^{(\sigma(1))}), \dots, (X^{(\sigma(n))}, Y^{(\sigma(n))}).$

 $\, \hookrightarrow \, \text{i.i.d.} \, \Rightarrow \text{exchangeability}$

CQR marginal validity (Romano et al., 2019)

Suppose $(X^{(k)}, Y^{(k)})_{k=1}^{n+1}$ are exchangeable (or i.i.d.)^{*a*}. CQR applied on $(X^{(k)}, Y^{(k)})_{k=1}^{n}$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y^{(n+1)}\in\widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\}\geq 1-\alpha.$$

^aOnly the calibration and test data need to be exchangeable.

× Marginal coverage: $\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right) | X^{(n+1)} = x\right\} \ge 1 - \alpha.$

 $\widehat{C}_{\alpha} =$ estimated predictive set based on *n* data points.

Distribution-free X-conditional validity

 \widehat{C}_{α} achieves distribution-free X-conditional validity if:

• for any distribution \mathcal{D} ,

• for any associated exchangeable joint distribution $\mathcal{D}^{\mathrm{exch}(n+1)}$,

we have that:

$$\mathbb{P}_{\mathcal{D}^{\mathrm{exch}(n+1)}}\left(Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right) | X^{(n+1)}\right) \stackrel{a.s.}{\geq} 1 - \alpha.$$

Impossibility results (Vovk, 2012; Lei and Wasserman, 2014)

If \widehat{C}_{α} is distribution-free X-conditionally valid, then, for any \mathcal{D} , for \mathcal{D}_X -almost all \mathcal{D}_X -non-atoms $x \in \mathcal{X}$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes(n)}}\left\{\max\left(\widehat{C}_{\alpha}(x)\right)=\infty\right\}\geq 1-\alpha.$$

Approximate conditional coverage

 $\stackrel{\hookrightarrow}{\to} \text{Romano et al. (2020); Guan (2022); Jung et al. (2023); Gibbs et al. (2023)} \\ \text{Target } \mathbb{P}(Y^{(n+1)} \in \widehat{C}_{\alpha}(X^{(n+1)}) | X^{(n+1)} \in \mathcal{R}(x)) \geq 1 - \alpha$

Asymptotic (with the sample size) conditional coverage
 → Romano et al. (2019); Kivaranovic et al. (2020); Chernozhukov et al. (2021); Sesia and Romano (2021); Izbicki et al. (2022)

Non exhaustive references.

Part I: time series

▷ Adaptive Conformal Predictions for Time Series. In *ICML*.

(Z., Féron, Goude, Josse, and Dieuleveut, 2022)

▷ Adaptive Probabilistic Forecasting of French Electricity Spot Prices. Submitted to Applied Energy. (Dutot*, Z.*, Féron, and Goude, 2024)

Part II: missing values

> Conformal Prediction with Missing Values. In ICML.

(Z., Dieuleveut, Josse, and Romano, 2023)

▷ Predictive Uncertainty Quantification with Missing Covariates. Submitted to Journal of Machine Learning Research. (Z., Josse, Romano, and Dieuleveut, 2024)

Introduction

Time series

Theoretical analysis of ACI's length

AgACI

Numerical experiments Simulated data and French electricity price forecasting

Missing values

Conclusion and perspectives

Online framework

- Data: T_0 random variables $(X^{(1)}, Y^{(1)}), \dots, (X^{(T_0)}, Y^{(T_0)})$ in $\mathbb{R}^d \times \mathbb{R}$
- <u>Aim</u>: predict the response values as well as predictive intervals for T_1 subsequent observations $X^{(T_0+1)}, \ldots, X^{(T_0+T_1)}$ sequentially: at any prediction step $t \in [\![T_0 + 1, T_0 + T_1]\!]$, $Y^{(t-T_0)}, \ldots, Y^{(t-1)}$ have been revealed
- Build the smallest interval \widehat{C}^t_{α} such that:

$$\mathbb{P}\left\{Y^{(t)} \in \widehat{C}^{t}_{\alpha}\left(X^{(t)}\right)\right\} \geq 1 - \alpha, \text{ for } t \in [\![T_0 + 1, T_0 + T_1]\!],$$

often relaxed in:

$$\frac{1}{T_1}\sum_{t=T_0+1}^{T_0+T_1} \mathbb{1}\left\{Y^{(t)} \in \widehat{C}^t_{\alpha}\left(X^{(t)}\right)\right\} \approx 1-\alpha$$

Extensions of CP to forecasting time series (as of 2021)

- Theory (Chernozhukov et al., 2018)
- Applications (Wisniewski et al., 2020; Kath and Ziel, 2021)
- Gibbs and Candès (2021)

- Theory (Chernozhukov et al., 2018)
- Applications (Wisniewski et al., 2020; Kath and Ziel, 2021)
- Gibbs and Candès (2021)

Adaptive Conformal Inference (ACI) was initially proposed to handle distribution shift.

It relies on updating online an *effective miscoverage rate* α_t , with the scheme

$$\alpha_{t+1} := \alpha_t + \gamma \left(\alpha - \mathbb{1} \left\{ Y^{(t)} \notin \widehat{C}_{\alpha_t} \left(X^{(t)} \right) \right\} \right),$$

and $\alpha_1 = \alpha$, $\gamma \ge 0$.

Intuition: if we did make an error, the interval was too small so we want to increase its length by taking a higher quantile (a smaller α_t). Reversely if we included the point.

Visualisation of ACI procedure

Figure 1: Visualisation of ACI with different values of γ ($\gamma = 0$, $\gamma = 0.01$, $\gamma = 0.05$)

Gibbs and Candès (2021) provide an asymptotic validity result for any sequence of observations.

$$\left|\frac{1}{T_1}\sum_{t=T_0+1}^{T_0+T_1}\mathbb{1}\left\{Y^{(t)}\in\widehat{C}_{\alpha_t}\left(X^{(t)}\right)\right\}-(1-\alpha)\right|\leq\frac{2}{\gamma T_1}$$

 \Rightarrow favors large γ . But, the higher γ , the more frequent are the infinite intervals.

Introduction

Time series

Theoretical analysis of ACI's length

AgACI

Numerical experiments Simulated data and French electricity price forecasting

Missing values

Conclusion and perspectives

<u>Aim</u>: derive theoretical results on the average length of ACI depending on γ

 $\hookrightarrow {\rm guideline} \ {\rm for} \ {\rm choosing} \ \gamma$

Approach:

- consider extreme cases (useful in an online context) with simple theoretical distributions
 - 1. exchangeable
 - 2. Auto-Regressive case (AR(1))
- assume the calibration is perfect, to rely on Markov Chain Theory
 - $\,\hookrightarrow\,$ the empirical quantiles correspond to the exact scores' quantile distribution Q

Define:

- $L(\alpha_t) = 2Q(1 \alpha_t)$ the adaptive algorithm's interval's length at time t,
- $L_0 = 2Q(1 \alpha)$ the non-adaptive algorithm's interval's length (i.e. $\gamma = 0$).

Limit length under exchangeability (Z., Féron, Goude, Josse, and Dieuleveut, 2022)

Assume the scores are exchangeable with quantile function Q perfectly estimated at each time, and other technical assumptions.

Then, for all $\gamma > 0$, $(\alpha_t)_{t>0}$ forms a Markov Chain, that admits a stationary distribution π_{γ} , and

$$\frac{1}{T}\sum_{t=1}^{T} L(\alpha_t) \xrightarrow[T \to +\infty]{a.s.} \mathbb{E}_{\pi_{\gamma}}[L] \stackrel{\text{not.}}{=} \mathbb{E}_{\tilde{\alpha} \sim \pi_{\gamma}}[L(\tilde{\alpha})].$$

Moreover, as $\gamma \to 0$, $\mathbb{E}_{\pi_{\gamma}}[L] = L_0 + Q''(1-\alpha)\frac{\gamma}{2}\alpha(1-\alpha) + O(\gamma^{3/2}).$

Theoretical and numerical analysis of ACI's length: AR(1) case

Convergence under AR(1) (Z., Féron, Goude, Josse, and Dieuleveut, 2022)

Assume the residuals follow an AR(1) process: $\hat{\varepsilon}^{(t+1)} = \varphi \hat{\varepsilon}^{(t)} + \xi^{(t+1)}$ with $(\xi^{(t)})_t$ i.i.d. random variables and other technical assumptions, we have:

$$\frac{1}{T}\sum_{t=1}^{T}L(\alpha_t)\xrightarrow[T\to+\infty]{a.s.}\mathbb{E}_{\pi_{\gamma,\varphi}}[L]\stackrel{\text{not.}}{=}\mathbb{E}_{\tilde{\alpha}\sim\pi_{\gamma,\varphi}}[L(\tilde{\alpha})].$$

Introduction

Time series

Theoretical analysis of ACI's length

AgACI

Numerical experiments Simulated data and French electricity price forecasting

Missing values

Conclusion and perspectives

Online aggregation under expert advice (Cesa-Bianchi and Lugosi, 2006) computes an optimal weighted mean of experts.

AgACI performs 2 independent aggregations: one for each bound (the upper and lower ones), based on the corresponding pinball losses.

AgACI: adaptive wrapper around ACI, scheme (upper bound)

Introduction

Time series

Theoretical analysis of ACI's length

AgACI

Numerical experiments

Simulated data and French electricity price forecasting

Missing values

Conclusion and perspectives

- Synthetic data with ARMA noise (Z., Féron, Goude, Josse, and Dieuleveut, 2022)
 - $\circ~$ Benchmarks are not robust to the increase in the temporal dependence;
 - $\circ~$ ACI is robust, maintaining validity, with an appropriate $\gamma;$
 - $\circ~\mbox{AgACI}$ is robust, maintaining validity, not the smallest.
- French electricity spot prices
 - $\circ~\underline{2019:}$ AgACI provides validity with a reasonable efficiency;

(Z., Féron, Goude, Josse, and Dieuleveut, 2022)

 <u>2020 and 2021</u>: AgACI fails to ensure validity, and the various forecasting models considered behave differently. (Dutot*, Z.*, Féron, and Goude, 2024)

Online aggregation of various AgACI, each of them being trained with different underlying forecasting models, for each bound independently.

- ✓ Retrieves validity even in the most hazardous period of 2020 and 2021.
- Analyzing its weights provides interpretability.

Aggregating the two bounds independently (as in AgACI and beyond):

- Allows more flexible and adaptive behavior in practice, catching the varying nature of the predictive distribution tails
- Prevents from obtaining theoretical guarantees (by opposition to Gibbs and Candès, 2022)
- \hookrightarrow Weaken the objective and consider a more practical theoretical aim?

Introduction

Time series

Missing values

Goals and challenges for predictive uncertainty quantification Is MCV a too lofty goal?! Achieving MCV under $M \perp X$ and $Y \perp M \mid X$

Conclusion and perspectives

Missing values are ubiquitous and challenging

Data: $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^{n}$

Y	X_1	X_2	<i>X</i> ₃
22.42	0.55	0.67	0.03
8.26	0.72	0.18	0.55
19.41	0.60	0.58	NA
19.75	0.54	0.43	0.96
7.32	NA	0.19	NA
13.55	0.65	0.69	0.50
20.75	NA	NA	0.61
9.26	0.89	NA	0.84
9.68	0.963	0.45	0.65

$\hookrightarrow 2^d$ potential masks.

- $\hookrightarrow M$ can depend on X or Y.
- \Rightarrow Statistical and computational challenges.

Impute-then-regress procedures are widely used.

1. Replace NA using an imputation function (e.g. the mean), noted ϕ .

2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed data: $\left\{ \underbrace{\phi(X_{obs(M^{(k)})}^{(k)}, M^{(k)})}_{U^{(k)} = imputed X^{(k)}}, Y^{(k)} \right\}_{k=1}^{n}$

 \hookrightarrow we consider an impute-then-regress pipeline in this work.

Introduction

Time series

Missing values

Goals and challenges for predictive uncertainty quantification Is MCV a too lofty goal?! Achieving MCV under $M \perp X$ and $Y \perp M \mid X$

Conclusion and perspectives
Goals of predictive uncertainty quantification with missing values

Goal: predict $Y^{(n+1)}$ with confidence $1 - \alpha$, i.e. build the smallest C_{α} such that for any \mathcal{D} and any associated $\mathcal{D}^{\operatorname{exch}(n+1)}$:

Marginal Validity (MV)

$$\mathbb{P}_{\mathcal{D}^{\mathrm{exch}(n+1)}}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \ge 1 - \alpha. \tag{MV}$$

Mask-Conditional-Validity (MCV)

$$\mathbb{P}_{\mathcal{D}^{\mathrm{exch}(n+1)}}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right) | M^{(n+1)}\right\} \stackrel{a.s.}{\geq} 1 - \alpha. \quad (\mathsf{MCV})$$

M forms **meaningful categories**

 \hookrightarrow Even if $M \perp X$ and $Y \perp M \mid X$ (e.g. equity standpoint)

Exchangeability after imputation (Z., Dieuleveut, Josse and Romano, 2023)

Assume $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^{n}$ are i.i.d. (or exchangeable). Then, for any missing mechanism, for almost all imputation function^a ϕ : $\left(\phi\left(X_{obs(M^{(k)})}^{(k)}, M^{(k)}\right), Y^{(k)}\right)_{k=1}^{n}$ are **exchangeable**.

^aEven if the imputation is not accurate, the guarantee will hold.

 \Rightarrow CQR, and Conformal Prediction, applied on an imputed data set still enjoys marginal guarantees⁴:

$$\mathbb{P}_{\mathcal{D}^{\mathrm{exch}(n+1)}}\left\{Y^{(n+1)}\in\widehat{C}_{\alpha}\left(X^{(n+1)},M^{(n+1)}\right)\right\}\geq 1-\alpha.$$

⁴The upper bound also holds under continuously distributed scores.

CQR is marginally valid on imputed data sets

$$Y=eta^{ op}X+arepsilon,\ eta=(1,2,-1)^{ op}$$
, X and $arepsilon$ Gaussian.

- ✓ Marginal (i.e. average) coverage (MV) is indeed recovered!
- X Mask-conditional-validity (MCV) is not attained
 - $\,\hookrightarrow\,$ Missing values induce heteroskedasticity

(supported by theory under (non-)parametric assumptions)

Conformalization step is independent of the important variable: the mask!

Observation: the α -correction term is computed among all the data points, regardless of their mask!

Warning: 2^d possible masks

 \Rightarrow Splitting the calibration set by mask is infeasible (lack of data)!

Question: for low probability masks (i.e. $\mathcal{D}_M(m) := \mathbb{P}_{\mathcal{D}}(M = m)$ is small), is it possible to learn from the predictive distributions conditional on other masks?

29 / 37

Introduction

Time series

Missing values

Goals and challenges for predictive uncertainty quantification Is MCV a too lofty goal?! Achieving MCV under $M \perp X$ and $Y \perp M \mid X$

Conclusion and perspectives

General MCV hardness result (Z., Josse, Romano and Dieuleveut, 2024)⁵

If any \widehat{C}_{α} is distribution-free MCV then **for any distribution** \mathcal{D} , for any mask m such that $\mathcal{D}_M(m) := \mathbb{P}_{\mathcal{D}}(M = m) > 0$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\mathsf{mes}\left(\widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)}, m\right)\right) = \infty\right) \geq 1 - \alpha - \Delta_{m,n} \geq 1 - \alpha - \mathcal{D}_{\mathcal{M}}(m)\sqrt{n+1}$$

Irreducible term: consider \widehat{C}_{α} outputting \mathcal{Y} with probability $1 - \alpha$ and \emptyset otherwise. $\Delta_{m,n}$ term: smaller than $\mathcal{D}_{M}(m)\sqrt{n+1}$

 \hookrightarrow gets negligible (making the lower bound nearly $1 - \alpha$) only for low probability masks compared to *n*.

⁵An analogous statement is also available for the classification framework.

Restricting the link between M and (X or Y) does not allow informative MCV

 $M \perp X$ hardness result (Z., Josse, Romano and Dieuleveut, 2024)

If any \widehat{C}_{α} is MCV under $M \perp X$, then for any distribution \mathcal{D} such that $M \perp X$, for any mask m such that $\mathcal{D}_{M}(m) > 0$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\mathsf{mes}\left(\widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)}, m\right)\right) = \infty\right) \geq 1 - \alpha - \mathcal{D}_{\mathcal{M}}(m)\sqrt{n+1}.$$

 $Y \perp M \mid X$ hardness result (Z., Josse, Romano and Dieuleveut, 2024)

If any \widehat{C}_{α} is MCV under $Y \perp M \mid X$, then for any distribution \mathcal{D} such that $Y \perp M \mid X$, for any mask m such that $\frac{1}{\sqrt{2}} \geq \mathcal{D}_M(m) > 0$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\max\left(\widehat{C}_{\alpha}\left(X^{(n+1)},m\right)\right)=\infty\right)\geq 1-\alpha-2\mathcal{D}_{M}(m)\sqrt{n+1}.$$

 \Rightarrow Need to restrict **both** the link between *M* and *X*, **as well as** between *M* and *Y*.

Analogous statements are also available for the classification framework.

Introduction

Time series

Missing values

Goals and challenges for predictive uncertainty quantification Is MCV a too lofty goal?!

Achieving MCV under $M \bot X$ and $Y \bot M | X$

Conclusion and perspectives

CP-MDA-Nested^{*} (Missing Data Augmentation): three instances

32 / 37

Mask-conditional-validity of CP-MDA-Nested* (Z., Josse, Romano and Dieuleveut, 2024)

Under the assumptions that:

- *M*⊥⊥*X*,
- $Y \perp M \mid X$,

•
$$(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^{n+1}$$
 are i.i.d.,

• the subsampling scheme is independent of $(X^{(k)}, Y^{(k)})_{k=1}^{n+1}$,

then, for almost all imputation function, CP-MDA-Nested* reaches (MCV) at the level $1 - 2\alpha$, that is:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right) | M^{(n+1)}\right\} \stackrel{a.s.}{\geq} 1 - 2\alpha.$$

Experiments on $M \perp X$ and $Y \perp M \mid X$ Gaussian linear data in dimension 10

Figure 4: 40% of missing values

~ CP-MDA-Exact outputs many infinite intervals on points with less than 6 NAs.

- \sim Compared to CP-MDA-Nested, CP-MDA-Nested* selecting points with at most 2 more NAs reduces the length by:
 - 5.5% marginally;
 - 10% on fully observed points.

- ✓ Under various M[⊥]_⊥X (MAR and MNAR) mechanisms, CP-MDA-Nested^{*} maintains empirical MCV;
- × When $Y \not\perp M \mid X$ and the imputation is not accurate enough:
 - CP-MDA-Nested* fails to empirically ensure MCV,
 - with a loss of coverage that is more critical when subsampling.

Introduction

Time series

Missing values

Conclusion and perspectives

Key messages and contributions

Part I: time series

- $\triangleright~$ Impact of hyper-parameter on the intervals efficiency
- $\,\triangleright\,$ Methodologies for online forecasting with post-hoc predictive UQ
- ▷ Extensive benchmark on time series CP and French elec. spot prices

Part II: missing values

- $\,\triangleright\,$ Missingness and predictive uncertainty interplay's characterization
- Methodology to achieve MCV
- > Numerical experiments beyond the assumptions

Open-sourced introductive tutorial on CP, (to be) presented at:

- ▷ MASPIN days 2023, with C. Boyer,
- ▷ ENBIS 2023,
- ▷ UAI 2024, with A. Dieuleveut,
- ▷ ICML 2024, with A. Dieuleveut.

Some direct open directions include:

 \triangleright Deeper investigation of practical time series CP (data sets, extremes, improved model, interpertability, theoretical objective)

 Multidimensional predictive uncertainty quantification <u>Motivation:</u> forecast multiple (correlated) electricity prices simultaneously (e.g., different countries or market horizons) Challenge: capture the multivariate uncertainty Thank you for your attention! And many thanks to

Aymeric Dieuleveut

Olivier Féron

Yannig Goude

Claire Boyer

Grégoire Dutot and many others :) oude

Julie Josse

Yaniv Romano

- Angelopoulos, A. N., Candès, E. J., and Tibshirani, R. J. (2023). Conformal pid control for time series prediction. arXiv: 2307.16895.
- Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani, R. J. (2021). Predictive inference with the jackknife+. *The Annals of Statistics*, 49(1).
- Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani, R. J. (2022). Conformal prediction beyond exchangeability. To appear in *Annals of Statistics (2023)*.
- Bastani, O., Gupta, V., Jung, C., Noarov, G., Ramalingam, R., and Roth, A. (2022). Practical adversarial multivalid conformal prediction. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Bhatnagar, A., Wang, H., Xiong, C., and Bai, Y. (2023). Improved online conformal prediction via strongly adaptive online learning. In *Proceedings of the* 40th International Conference on Machine Learning. PMLR.

- Cauchois, M., Gupta, S., Ali, A., and Duchi, J. C. (2020). Robust Validation: Confident Predictions Even When Distributions Shift. arXiv: 2008.04267.
- Cesa-Bianchi, N. and Lugosi, G. (2006). *Prediction, learning, and games.* Cambridge University Press.
- Chernozhukov, V., Wüthrich, K., and Yinchu, Z. (2018). Exact and Robust Conformal Inference Methods for Predictive Machine Learning with Dependent Data. In *Conference On Learning Theory*. PMLR.
- Chernozhukov, V., Wüthrich, K., and Zhu, Y. (2021). Distributional conformal prediction. *Proceedings of the National Academy of Sciences*, 118(48).
- Feldman, S., Ringel, L., Bates, S., and Romano, Y. (2023). Achieving risk control in online learning settings. *Transactions on Machine Learning Research (TMLR)*.

- Gibbs, I. and Candès, E. (2021). Adaptive conformal inference under distribution shift. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Gibbs, I. and Candès, E. (2022). Conformal inference for online prediction with arbitrary distribution shifts. arXiv: 2208.08401.
- Gibbs, I., Cherian, J. J., and Candès, E. J. (2023). Conformal prediction with conditional guarantees. arXiv: 2305.12616.
- Gneiting, T., Balabdaoui, F., and Raftery, A. E. (2007). Probabilistic forecasts, calibration and sharpness. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 69(2):243–268.
- Guan, L. (2022). Localized conformal prediction: a generalized inference framework for conformal prediction. *Biometrika*, 110(1).

References iv

- Hong, T. and Fan, S. (2016). Probabilistic electric load forecasting: A tutorial review. *International Journal of Forecasting*, 32(3):914–938.
- Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., and Hyndman, R. J. (2016). Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond. *International Journal of Forecasting*, 32(3):896–913.
- Izbicki, R., Shimizu, G., and Stern, R. B. (2022). CD-split and HPD-split: Efficient conformal regions in high dimensions. *Journal of Machine Learning Research*, 23(87).
- Jung, C., Noarov, G., Ramalingam, R., and Roth, A. (2023). Batch multivalid conformal prediction. In *International Conference on Learning Representations*.
- Kath, C. and Ziel, F. (2021). Conformal prediction interval estimation and applications to day-ahead and intraday power markets. *International Journal of Forecasting*.

- Kivaranovic, D., Johnson, K. D., and Leeb, H. (2020). Adaptive, Distribution-Free Prediction Intervals for Deep Networks. In *International Conference on Artificial Intelligence and Statistics*. PMLR.
- Lei, J. and Wasserman, L. (2014). Distribution-free prediction bands for non-parametric regression. *Journal of the Royal Statistical Society: Series B* (*Statistical Methodology*), 76(1).
- Podkopaev, A. and Ramdas, A. (2021). Distribution-free uncertainty quantification for classification under label shift. In *Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence*. PMLR.
- Romano, Y., Barber, R. F., Sabatti, C., and Candès, E. (2020). With Malice Toward None: Assessing Uncertainty via Equalized Coverage. *Harvard Data Science Review*, 2(2).

- Romano, Y., Patterson, E., and Candès, E. (2019). Conformalized Quantile Regression. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Sesia, M. and Romano, Y. (2021). Conformal prediction using conditional histograms. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Tibshirani, R. J., Barber, R. F., Candes, E., and Ramdas, A. (2019). Conformal Prediction Under Covariate Shift. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Vovk, V. (2012). Conditional Validity of Inductive Conformal Predictors. In Asian Conference on Machine Learning. PMLR.

- Wan, C., Xu, Z., Pinson, P., Dong, Z. Y., and Wong, K. P. (2014). Probabilistic forecasting of wind power generation using extreme learning machine. *IEEE Transactions on Power Systems*, 29(3):1033–1044.
- Wang, H., Li, G., Wang, G., Peng, J., Jiang, H., and Liu, Y. (2017). Deep learning based ensemble approach for probabilistic wind power forecasting. *Applied Energy*, 188:56–70.
- Wisniewski, W., Lindsay, D., and Lindsay, S. (2020). Application of conformal prediction interval estimations to market makers' net positions. Proceedings of Machine Learning Research. PMLR.
- Zaffran, M., Féron, O., Goude, Y., Josse, J., and Dieuleveut, A. (2022). Adaptive conformal predictions for time series. In *Proceedings of the 39th International Conference on Machine Learning*. PMLR.

Literature on non-exchangeable CP

Updating the training and calibration sets

Theoretical analysis of ACI's length

Numerical experiments

Missing Values

Two major general theoretical results beyond exchangeability:

• Chernozhukov et al. (2018)

 \hookrightarrow If the learnt model is accurate and the data noise is strongly mixing, then CP is valid asymptotically \checkmark

• Barber et al. (2022)

 \hookrightarrow Quantifies the coverage loss depending on the strength of exchangeability violation

 $\mathbb{P}(Y_{n+1} \in \widehat{C}_{\alpha}(X_{n+1})) \geq 1 - \alpha - \frac{\text{average violation of exchangeability}}{\text{by each calibration point}}$

 \hookrightarrow proposed algorithm: reweighting (again)!

e.g., in a temporal setting, give higher weights to more recent points.

CP requires exchangeable data points to ensure validity

- X Covariate shift, i.e. \mathcal{L}_X changes but $\mathcal{L}_{Y|X}$ stays constant (see e.g., Tibshirani et al., 2019)
- × Label shift, i.e. \mathcal{L}_Y changes but $\mathcal{L}_{X|Y}$ stays constant (see e.g., Podkopaev and Ramdas, 2021)
- X Arbitrary distribution shift (see e.g., Cauchois et al., 2020)

Possibly many shifts, not only one (main focus of this presentation)

- Gibbs and Candès (2022) later on also proposes a method not requiring to choose γ
- Bhatnagar et al. (2023) enjoys **anytime** regret bound, by leveraging tools from the strongly adaptive regret minimization literature
- Feldman et al. (2023) extends ACI to general risk control
- Bastani et al. (2022) proposes an algorithm achieving stronger coverage guarantees (conditional on specified overlapping subsets, and threshold calibrated) without hold-out set
- Angelopoulos et al. (2023) combines CP ideas with control theory ones, to adaptively improve the predictive intervals depending on the errors structure

Non exhaustive references.

Literature on non-exchangeable CP

Updating the training and calibration sets

Theoretical analysis of ACI's length

Numerical experiments

Missing Values

Usual ideas from the time series literature:

- Consider an online procedure (for each new data, re-train and re-calibrate)
 - \hookrightarrow update to recent observations (trend impact, period of the seasonality, dependence...)
- Use a sequential split
 - \hookrightarrow use only the past so as to correctly estimate the variance of the residuals (using the future leads to optimistic residuals and underestimation of their variance)

Wisniewski et al. (2020); Kath and Ziel (2021); Zaffran et al. (2022)

 \hookrightarrow tested on real time series

Literature on non-exchangeable CP Updating the training and calibration sets Theoretical analysis of ACI's length

Numerical experiments

Missing Values

Numerical analysis of ACI's length: AR(1) case

Assume the residuals follow an AR(1) process: $\hat{\varepsilon}_{t+1} = \varphi \hat{\varepsilon}_t + \xi_{t+1}$ with $(\xi_t)_t$ i.i.d. random variables and other assumptions, we have:

Figure 5: Left: evolution of the mean length depending on γ for various φ . Right: γ^* minimizing the average length for each φ .

Literature on non-exchangeable CP Updating the training and calibration sets Theoretical analysis of ACI's length Numerical experiments

Missing Values

Literature on non-exchangeable CP Updating the training and calibration sets Theoretical analysis of ACI's length

Numerical experiments

Synthetic data

Forecasting French electricity prices

Missing Values

$$Y_{t} = 10\sin(\pi X_{t,1}X_{t,2}) + 20(X_{t,3} - 0.5)^{2} + 10X_{t,4} + 5X_{t,5} + \varepsilon_{t}$$

where the $X_{t,\cdot} \sim \mathcal{U}([0,1])$ and ε_t is an ARMA(1,1) process:

$$\varepsilon_{t+1} = \varphi \varepsilon_t + \xi_{t+1} + \theta \xi_t$$

with ξ_t is a white noise of variance σ^2 .

- $\varphi = \theta$ range in [0.1, 0.8, 0.9, 0.95, 0.99].
- We fix σ to keep the variance $Var(\varepsilon_t)$ constant to 10 (or 1).
- We use random forest as regressor.
- For each setting (pair variance and φ, θ):
 - o 300 points, the last 100 kept for prediction and evaluation,
 - o 500 repetitions,
 - $\Rightarrow\,$ in total, 100 $\times\,500=50000$ predictions are evaluated.
Visualisation of the results

Results: impact of the temporal dependence, ARMA(1,1), variance 10

- OSSCP (adapted from Lei et al., 2018)
- Offline SSCP (adapted from Lei et al., 2018)
- × EnbPI (Xu & Xie, 2021)
- + EnbPI V2

- ACI (Gibbs & Candès, 2021), $\gamma = 0.01$
- ACI (Gibbs & Candès, 2021), γ = 0.05
- * AgACI

Summary

- 1. The temporal dependence impacts the *validity*.
- 2. Online is significantly better than offline.
- 3. **OSSCP.** Achieves *valid* coverage for φ and θ smaller than 0.9, but is not robust to the increasing dependence.
- 4. **EnbPI.** Its *validity* strongly depends on the data distribution. When the method is *valid*, it produces the smallest intervals. EnbPI V2 method should be preferred.
- 5. ACI. Achieves *valid* coverage for every simulation settings with a well chosen γ , or for dependence such that $\varphi < 0.95$. It is robust to the strength of the dependence.
- 6. **AgACI.** Achieves *valid* coverage for every simulation settings, with good *efficiency*.

Empirical evaluation of ACI sensitivity to γ and adaptive choice

⇒ The more the dependence, the more sensitive to γ is ACI. Naive method (\triangledown): smallest among valid ones in the past ⇒ accumulates error of the different ACI's versions. AgACI (\bigstar): encouraging preliminary results.

Results: impact of the temporal dependence, ARMA(1), variance 10, average length after imputation

Results: impact of the temporal dependence, AR(1) and MA(1), variance 10, average length after imputation

Time Series

Literature on non-exchangeable CP Updating the training and calibration sets Theoretical analysis of ACI's length

Numerical experiments

Synthetic data

Forecasting French electricity prices

Missing Values

Forecasting electricity prices with confidence in 2019

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- $\, \hookrightarrow \, \text{24 models}$
 - $\circ y_t \in \mathbb{R}$
 - $x_t \in \mathbb{R}^d$, with d = 24 + 24 + 1 + 7 = 56
 - $\circ~$ 3 years for training/calibration, i.e. $~T_0=1096~observations$
 - $\circ~$ 1 year to forecast, i.e. ${\it T}_1=365$ observations

Performance on predicted French electricity Spot price for the year 2019

Forecasting electricity prices with confidence in 2020 and 2021, various models

Forecasting electricity prices with confidence in 2020 and 2021, linear models

Forecasting electricity prices with confidence in 2020 and 2021, QRF models

Forecasting electricity prices with confidence in 2020 and 2021, online aggregation models

Missing Values

Time Series

Missing Values

Missing values and predictive uncertainty interplay

 $\texttt{CP-MDA-Nested}^{\star}$

Numerical experiments

Towards asymptotic individualized coverage

Missing values induce heteroskedasticity

Gaussian linear model

- $Y = \beta^T X + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon}^2) \perp (X, M)$, $\beta \in \mathbb{R}^d$.
- for all $m \in \{0, 1\}^d$, there exist μ^m and Σ^m such that $X|(M = m) \sim \mathcal{N}(\mu^m, \Sigma^m).$

 \hookrightarrow oracle intervals: smallest predictive interval when the distribution of Y|(X,M) is known

Oracle int. under Gaussian lin. mod. (Z., Dieuleveut, Josse, and Romano, 2023)

$$\mathcal{L}^*_{\alpha}(m) = 2 \times q_{1-\alpha/2}^{\mathcal{N}(0,1)} \times \sqrt{\beta_{\mathrm{mis}(m)}^{\mathcal{T}} \Sigma_{\mathrm{mis}|\mathrm{obs}}^m \beta_{\mathrm{mis}(m)} + \sigma_{\varepsilon}^2}.$$

- Even with an homoskedastic noise, missingness generates heteroskedasticity
- The uncertainty increases when missing values are associated with larger regression coefficients (i.e. the most predictive variables)

Properties of isotonic predictive uncertainty

$$\begin{split} V(X_{\text{obs}(M)}, M) &:= \operatorname{Var}\left(Y|X_{\text{obs}(M)}, M\right) \\ V(X_{\text{obs}(m)}, m) &\stackrel{a.s.}{\leq} V(X_{\text{obs}(m')}, m') & \text{for any } m \subset m', \\ (\text{Var-1}) \\ \mathbb{E}\left[V(X_{\text{obs}(M)}, M)|M = m\right] &\leq \mathbb{E}\left[V(X_{\text{obs}(M)}, M)|M = m'\right] & \text{for any } m \subset m'. \\ (\text{Var-2}) \\ IQ_{\beta,\gamma}(X_{\text{obs}(m)}, m) &\stackrel{a.s.}{\leq} IQ_{\beta,\gamma}(X_{\text{obs}(m')}, m') & \text{for any } m \subset m', \\ (IQ-1) \\ \mathbb{E}\left[IQ_{\beta,\gamma}(X_{\text{obs}(M)}, M)|M = m\right] &\leq \mathbb{E}\left[IQ_{\beta,\gamma}(X_{\text{obs}(M)}, M)|M = m'\right] & \text{for any } m \subset m'. \\ (IQ-2) \\ \Lambda(\mathcal{C}_{\alpha}(X_{\text{obs}(m)}, m)) &\stackrel{a.s.}{\leq} \Lambda(\mathcal{C}_{\alpha}(X_{\text{obs}(m')}, m')) & \text{for any } m \subset m', \end{split}$$

(Len-1)

 $\mathbb{E}\left[\Lambda(\mathcal{C}_{\alpha}(X_{\operatorname{obs}(M)},M))|M=m\right] \leq \mathbb{E}\left[\Lambda(\mathcal{C}_{\alpha}(X_{\operatorname{obs}(M)},M))|M=m'\right] \quad \text{ for any } m \subset m'.$ (Len-2)

Setup Property	GLM homoske.	GLM heteroske.	$M \bot\!\!\!\perp X$ and $Y \bot\!\!\!\perp M \mid X$
Variance	Var-1	Var-I Var-2	Var-2
Inter-quantile	IQ-1	IQ-2	
Length of Oracle PI	Len-1	Len-2	Len-2

Univariate heteroskedastic Gaussian linear model

Unidimensional heteroskedasticity

Consider the following one-dimensional model:

- $X \sim \mathcal{N}(0, \sigma^2)$, $\sigma \in \mathbb{R}_+$;
- $\xi \sim \mathcal{N}(0, \tau^2)$, $\tau \in \mathbb{R}_+$, such that $\xi \perp X$;

•
$$Y = \beta X + X\xi$$
, with $\beta \in \mathbb{R}$;

•
$$M \sim \mathcal{B}(\rho)$$
, with $\rho \in [0, 1]$, and $M \perp (X, Y)$.

Time Series

Missing Values

Missing values and predictive uncertainty interplay

$\texttt{CP-MDA-Nested}^{\star}$

Numerical experiments

Towards asymptotic individualized coverage

Input: *i*) Training set $\{(X^{(k)}, M^{(k)}, Y^{(k)})\}_{k=1}^{n}$. *ii*) imputation algorithm \mathcal{I} . *iii*) learning algorithm \mathcal{A} taking its values in $\mathcal{F} := \mathcal{Y}^{\mathcal{X} \times \mathcal{M}}$. *iv*) calibration proportion $\rho \in]0, 1]$. *v*) $\{\operatorname{Tr}, \operatorname{Cal}, \Phi, \hat{A}\}$ the output of the splitting algorithm 1 ran on $\{\{(X^{(k)}, M^{(k)}, Y^{(k)})\}_{k=1}^{n}, \mathcal{I}, \mathcal{A}, \rho\}$. *vi*) conformity score function $s(\cdot, \cdot; f)$ for $f \in \mathcal{F}$. *vii*) significance level α . *viii*) test point $(X^{(n+1)}, M^{(n+1)})$. *ix*) subsampled set of calibration indices $\operatorname{Cal} \subseteq \operatorname{Cal}$ for $k \in \operatorname{Cal}$: $\widetilde{M}^{(k)} = \max(M^{(k)}, M^{(n+1)})$ $\widehat{C}^{\mathrm{MDA-Nested}^{\star}}(X^{(n+1)}, M^{(n+1)}) := \{y \in \mathcal{Y} : (1-\alpha)(1 + \#\operatorname{Cal}) >$

$$\sum_{k \in \text{Cal}} \mathbb{1}\left\{ s\left(\left(X^{(k)}, \widetilde{M}^{(k)} \right), Y^{(k)}; \hat{A}(\Phi(\cdot, \cdot), \cdot) \right) < s\left(\left(X^{(n+1)}, \widetilde{M}^{(k)} \right), y; \hat{A}(\Phi(\cdot, \cdot), \cdot) \right) \right\} \right\}$$

Algorithm 1 Split and train

- **Input:** Imputation algorithm \mathcal{I} , learning algorithm \mathcal{A} taking its values in $\mathcal{F} := \mathcal{Y}^{\mathcal{X} \times \mathcal{M}}$, training set $\{(X^{(k)}, M^{(k)}, Y^{(k)})\}_{k=1}^{n}$, calibration proportion $\rho \in]0, 1]$ **Output:** Splitted sets of indices Tr and Cal, imputation function Φ , fitted predictor \hat{A}
 - 1: Randomly split $\{1, ..., n\}$ into 2 disjoint sets Tr & Cal of sizes #Tr = $(1 \rho)n$ and #Cal = ρn
 - 2: Fit the imputation function: $\Phi(\cdot, \cdot) \leftarrow \mathcal{I}(\{(X^{(k)}, M^{(k)}), k \in \mathrm{Tr}\})$
 - 3: Fit the learning algorithm \mathcal{A} : $\hat{A}(\cdot, \cdot) \leftarrow \mathcal{A}\left(\left\{\left(\Phi\left(X^{(k)}, M^{(k)}\right), M^{(k)}\right), k \in \mathrm{Tr}\right\}\right)$

CP-MDA-Nested* marginal validity (Z., Josse, Romano, and Dieuleveut, 2024)

Under the assumptions that:

- $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^{n+1}$ are exchangeable,
- the subsampling scheme keeps all of the calibration points,

then, for almost all imputation function, CP-MDA-Nested* reaches (MV) at the level $1 - 2\alpha$, that is:

$$\mathbb{P}_{\mathcal{D}^{\text{exch}(n+1)}}\left\{\boldsymbol{Y}^{(n+1)}\in\widehat{C}_{\alpha}\left(\boldsymbol{X}^{(n+1)},\boldsymbol{M}^{(n+1)}\right)\right\}\geq 1-2\alpha.$$

- ✓ Any missing mechanism (no need to assume $M \perp X$)
- ✓ Does not require $(Y \perp M) | X$
- × Marginal guarantee

Proof element: based on Jackknife+ ideas (Barber et al., 2021).

I conting out the leth data point to predict on the leth data point

MDA-Exact achieves Mask-Conditional-Validity (MCV)

CP-MDA-Exact achieves exact MCV (Z., Dieuleveut, Josse, and Romano, 2023) If:

•
$$(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^{n+1}$$
 are i.i.d.,

- $M \perp X$,
- $Y \perp M \mid X$,

then, for almost all imputation function, CP-MDA-Exact is such that for any $m \in \{0,1\}^d$ such that $\mathbb{P}_{\mathcal{D}}(M = m) > 0$:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left\{Y^{(n+1)} \in \widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right) | M^{(n+1)} = m\right\} \ge 1 - \alpha,$$

and if additionally the scores are almost surely distinct:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right) | M^{(n+1)} = m\right\} \leq 1 - \alpha + \frac{1}{\# \operatorname{Cal}^{m} + 1}.$$

Time Series

Missing Values

Missing values and predictive uncertainty interplay

CP-MDA-Nested*

Numerical experiments

Towards asymptotic individualized coverage

Before more experiments, visualisation

- $igstarrow: ext{marginal coverage, i.e.} \ \mathbb{P}(Y \in \hat{C}_lpha(X,M))$
- $igvee : ext{lowest coverage, i.e.} \ \min_{m \in \mathcal{M}} \mathbb{P}(Y \in \hat{C}_lpha(X,m) | M = m)$
- $igstarrow : ext{highest coverage, i.e.} \ \max_{m \in \mathcal{M}} \mathbb{P}(Y \in \hat{C}_lpha(X,m) | M = m)$

Time Series

Missing Values

Missing values and predictive uncertainty interplay CP-MDA-Nested*

Numerical experiments

 $M \bot\!\!\!\bot X$ and $Y \bot\!\!\!\!\bot M \mid \!\! X$

Beyond independence

Real data: TraumaBase®

Towards asymptotic individualized coverage

Semi-synthetic experiments

Time Series

Missing Values

Missing values and predictive uncertainty interplay CP-MDA-Nested*

Numerical experiments

 $M \perp X$ and $Y \perp M \mid X$

Beyond independence

Real data: TraumaBase®

Towards asymptotic individualized coverage

MAR, correlation coefficient of 0.8

MAR, independent features

MNAR self-masked, correlation coefficient of 0.8

MNAR self-masked, independent features

MNAR quantile censorship, correlation coefficient of 0.8

MNAR quantile censorship, independent features

$Y \not\perp M \mid X$, correlation coefficient of 0.8 (d = 3)

- $\varepsilon \sim \mathcal{N}(0,1) \perp (X,M)$,
- $X \sim \mathcal{N}(\mu, \Sigma), \ \mu = (1, 1, 1)^T, \ \Sigma = \varphi(1, 1, 1)^T (1, 1, 1) + (1 \varphi) I_d, \ \varphi = 0.8,$
- $M_i \sim \mathcal{B}(0.2)$ for any $i \in [1,3]$, independently from X and ε ,
- $Y = X_1 \mathbb{1} \{ M_1 = 0 \} + 2X_1 \mathbb{1} \{ M_1 = 1 \} + 3X_2 \mathbb{1} \{ M_2 = 1, M_3 = 1 \} + \varepsilon.$

$Y \not\perp M \mid X$, independent features (d = 3)

- $\varepsilon \sim \mathcal{N}(0,1) \perp (X,M)$,
- $X \sim \mathcal{N}(\mu, \Sigma), \ \mu = (1, 1, 1)^T, \ \Sigma = \varphi(1, 1, 1)^T (1, 1, 1) + (1 \varphi) I_d, \ \varphi = 0,$
- $M_i \sim \mathcal{B}(0.2)$ for any $i \in [1,3]$, independently from X and ε ,
- $Y = X_1 \mathbb{1} \{ M_1 = 0 \} + 2X_1 \mathbb{1} \{ M_1 = 1 \} + 3X_2 \mathbb{1} \{ M_2 = 1, M_3 = 1 \} + \varepsilon.$

Time Series

Missing Values

Missing values and predictive uncertainty interplay CP-MDA-Nested*

Numerical experiments

 $M \perp X$ and $Y \perp M \mid X$

Beyond independence

Real data: TraumaBase $^{\textcircled{R}}$

Towards asymptotic individualized coverage

- 30 hospitals
- More than 30 000 trauma patients
- 4 000 new patients per year
- 250 continuous and categorical variables
 - $\hookrightarrow \mathsf{Many} \text{ useful statistical tasks}$

Predict the level of blood platelets upon arrival at hospital, given 7 pre-hospital features.

These covariates are not always observed.

- Age: the age of the patient (no missing values);
- Lactate: the conjugate base of lactic acid, upon arrival at the hospital (17.66% missing values);
- Delta_hemo: the difference between the hemoglobin upon arrival at hospital and the one in the ambulance (23.82% missing values);
- VE: binary variable indicating if a Volume Expander was applied in the ambulance. A volume expander is a type of intravenous therapy that has the function of providing volume for the circulatory system (2.46% missing values);
- RBC: a binary index which indicates whether the transfusion of Red Blood Cells Concentrates is performed (0.37% missing values);

- SI: the shock index. It indicates the level of occult shock based on heart rate (HR) and systolic blood pressure (SBP), that is SI = ^{HR}/_{SBP}, upon arrival at hospital (2.09% missing values);
- HR: the heart rate measured upon arrival of hospital (1.62% missing values).

Real data experiment: TraumaBase[®], critical care medicine

Time Series

Missing Values

Missing values and predictive uncertainty interplay

 $\texttt{CP-MDA-Nested}^{\star}$

Numerical experiments

Towards asymptotic individualized coverage

Let Φ be an imputation function chosen by the user.

Denote
$$g_{\beta,\Phi}^* \in \underset{g:\mathbb{R}^d \to \mathbb{R}}{\operatorname{argmin}} \mathbb{E} \left[\rho_{\beta}(Y - g \circ \Phi(X, M)) \right] := \mathcal{R}_{\beta,\phi}(g).$$

Comparison with: argmin $\mathbb{E}\left[\rho_{\beta}(Y - f(X, M))\right]$ (informal).

Pinball-consistency of an universal learner (Z., Dieuleveut, Josse, and Romano, 2023)

For almost all \mathcal{C}^{∞} imputation function Φ , the function $g^*_{\beta,\Phi} \circ \Phi$ is Bayes optimal for the pinball-risk of level β .

 \hookrightarrow any universally consistent algorithm for quantile regression trained on the data imputed by Φ is pinball-Bayes-consistent.

This is an extension of the result of ?.

Corollary (Z., Dieuleveut, Josse, and Romano, 2023)

For any missing mechanism, for almost all \mathcal{C}^{∞} imputation function Φ , if $F_{Y|(X_{\text{obs}(M)},M)}$ is continuous, a universally consistent quantile regressor trained on the imputed data set yields asymptotic conditional coverage.

 $\hookrightarrow \mathbb{P}(Y \in \widehat{C}_{\alpha}(x) | X = x, M = m) \ge 1 - \alpha$ for any $m \in \mathcal{M}$ and any $x \in \mathbb{R}^d$, asymptotically with a super quantile learner.