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Forecasting French spot electricity prices

Hourly day-ahead market prices (between producers and suppliers)
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To which extent are they forecastable?

↪→ forecasts errors no lower than 10% of the realized price!
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Forecasting French electricity spot prices with confidence goal

New goal:
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Quantify predictive uncertainty with:

• Theoretically grounded tools

• Light assumptions on the underlying data distribution

• Guarantees agnostic to the prediction algorithm

 Post-hoc approach (i.e. no modification of the existing operational

pipeline)
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Forecasting French electricity spot prices with confidence challenges

Time series

. Temporal structure (trend, seasonality, dependence, etc.)

. Non-stationarity

Missing values

Improve forecasts by leveraging the emergence of open data platforms

(ENTSO-E Transparency, Eco2Mix, etc.)

. Missing covariates by aggregating different data sources
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Approach: black-box post-processing of existing probabilistic forecasts

Important literature on intervals forecast, emerging from the electrical application

(Hong et al., 2016; Hong and Fan, 2016), but also from renewable energies and

meteorology (Wan et al., 2014; Wang et al., 2017).

Wide range of models, mainly based on the pinball loss, such as

• Quantile Random Forests,

• Quantile Generalized Additive Models,

• Quantile Regression Averaging,

• intervals from Gaussian Auto-Regressive models with exogenous variables,

• Deep Learning Probabilistic,

etc.  in practice uncalibrated.

Black-box post-processing of available probabilistic forecasts

I Post-hoc approach: plug-in on top of any of these models

I Guarantees: in finite sample and distribution-free
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Quantifying predictive uncertainty

• (X ,Y ) ∈ Rd ×R random variables

• n training samples
(
X (k),Y (k)

)n
k=1

• Goal: predict an unseen point Y (n+1) at X (n+1) with confidence

• How? Given a miscoverage level α ∈ [0, 1], build a predictive set Cα such that:

P
{
Y (n+1) ∈ Cα

(
X (n+1)

)}
≥ 1− α, (validity)

and Cα should be as small as possible, in order to be informative1.

I Construction of the predictive intervals should be

◦ agnostic to the model2

◦ agnostic to the data distribution

◦ valid in finite samples

1Analogous to Gneiting et al. (2007).
2The underlying model can be any probabilistic model tailored for the application task at hand.
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Conformalized Quantile Regression (CQR)3
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3Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)3 training step
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I Learn (or get) Q̂Rlower and

Q̂Rupper

3Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)3 calibration step
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I Predict with Q̂Rlower and

Q̂Rupper

I Get the scores

S =
{
S (k)

}
Cal
∪ {+∞}

I Compute the (1− α) empirical

quantile of S, noted q1−α (S)

↪→ S (k) := max
{

Q̂Rlower

(
X (k)

)
− Y (k),Y (k) − Q̂Rupper

(
X (k)

)}
3Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)3 prediction step
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I Predict with Q̂Rlower and

Q̂Rupper

I Build

Ĉα(x) = [Q̂Rlower(x)− q1−α (S); Q̂Rupper(x) + q1−α (S)]

3Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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CQR theoretical foundation

Exchangeability(
X (k),Y (k)

)n
k=1

are exchangeable if for any permutation σ of J1, nK we have:(
X (1),Y (1)

)
, . . . ,

(
X (n),Y (n)

)
d
=
(
X (σ(1)),Y (σ(1))

)
, . . . ,

(
X (σ(n)),Y (σ(n))

)
.

↪→ i.i.d. ⇒ exchangeability
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CQR theoretical guarantees

CQR marginal validity (Romano et al., 2019)

Suppose
(
X (k),Y (k)

)n+1

k=1
are exchangeable (or i.i.d.)a.

CQR applied on
(
X (k),Y (k)

)n
k=1

outputs Ĉα (·) such that:

P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)}
≥ 1− α.

aOnly the calibration and test data need to be exchangeable.

7 Marginal coverage: P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)
������|X (n+1) = x

}
≥ 1− α.
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Definition of distribution-free features conditional validity

Ĉα = estimated predictive set based on n data points.

Distribution-free X -conditional validity

Ĉα achieves distribution-free X -conditional validity if:

• for any distribution D,

• for any associated exchangeable joint distribution Dexch(n+1),

we have that:

PDexch(n+1)

(
Y (n+1) ∈ Ĉα

(
X (n+1)

)
|X (n+1)

) a.s.
≥ 1− α.
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Informative conditional coverage as such is impossible

Impossibility results (Vovk, 2012; Lei and Wasserman, 2014)

If Ĉα is distribution-free X -conditionally valid, then, for any D, for DX–almost

all DX–non-atoms x ∈ X , it holds:

PD⊗(n)

{
mes

(
Ĉα(x)

)
=∞

}
≥ 1− α.

• Approximate conditional coverage

↪→ Romano et al. (2020); Guan (2022); Jung et al. (2023); Gibbs et al. (2023)

Target P(Y (n+1) ∈ Ĉα
(
X (n+1)

)
|X (n+1) ∈ R(x)) ≥ 1− α

• Asymptotic (with the sample size) conditional coverage

↪→ Romano et al. (2019); Kivaranovic et al. (2020); Chernozhukov et al.

(2021); Sesia and Romano (2021); Izbicki et al. (2022)

Non exhaustive references.
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Contributions and outline

Part I: time series

. Adaptive Conformal Predictions for Time Series. In ICML.
(Z., Féron, Goude, Josse, and Dieuleveut, 2022)

. Adaptive Probabilistic Forecasting of French Electricity Spot Prices. Sub-
mitted to Applied Energy. (Dutot∗, Z.∗, Féron, and Goude, 2024)

Part II: missing values

. Conformal Prediction with Missing Values. In ICML.
(Z., Dieuleveut, Josse, and Romano, 2023)

. Predictive Uncertainty Quantification with Missing Covariates. Submitted
to Journal of Machine Learning Research. (Z., Josse, Romano, and Dieuleveut, 2024)
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Online framework

• Data: T0 random variables (X (1),Y (1)), . . . , (X (T0),Y (T0)) in Rd ×R
• Aim: predict the response values as well as predictive intervals for T1 subsequent

observations X (T0+1), . . . ,X (T0+T1) sequentially:

at any prediction step t ∈ JT0 + 1,T0 + T1K, Y (t−T0), . . . ,Y (t−1) have been

revealed

• Build the smallest interval Ĉ t
α such that:

P
{
Y (t) ∈ Ĉ t

α

(
X (t)

)}
≥ 1− α, for t ∈ JT0 + 1,T0 + T1K,

often relaxed in:

1

T1

T0+T1∑
t=T0+1

1
{
Y (t) ∈ Ĉ t

α

(
X (t)

)}
≈ 1− α.
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Extensions of CP to forecasting time series (as of 2021)

• Theory (Chernozhukov et al., 2018)

• Applications (Wisniewski et al., 2020; Kath and Ziel, 2021)

• Gibbs and Candès (2021)

Adaptive Conformal Inference (ACI) was initially proposed to handle distribution

shift.

The proposed update scheme is the following:

αt+1 := αt + γ
(
α− 1

{
Y (t) /∈ Ĉαt

(
X (t)

)})
with α1 = α, γ ≥ 0.

Intuition: if we did make an error, the interval was too small so we want to

increase its length by taking a higher quantile (a smaller αt). Reversely if we

included the point.
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Extensions of CP to forecasting time series (as of 2021) ACI

• Theory (Chernozhukov et al., 2018)

• Applications (Wisniewski et al., 2020; Kath and Ziel, 2021)

• Gibbs and Candès (2021)

Adaptive Conformal Inference (ACI) was initially proposed to handle distribution

shift.

It relies on updating online an effective miscoverage rate αt , with the scheme

αt+1 := αt + γ
(
α− 1

{
Y (t) /∈ Ĉαt

(
X (t)

)})
,

and α1 = α, γ ≥ 0.

Intuition: if we did make an error, the interval was too small so we want to

increase its length by taking a higher quantile (a smaller αt). Reversely if we

included the point.
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Visualisation of ACI procedure
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Figure 1: Visualisation of ACI with different values of γ (γ = 0, γ = 0.01, γ = 0.05)
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ACI asymptotic result

Gibbs and Candès (2021) provide an asymptotic validity result for any sequence of

observations.

∣∣∣∣∣∣ 1

T1

T0+T1∑
t=T0+1

1
{
Y (t) ∈ Ĉαt

(
X (t)

)}
− (1− α)

∣∣∣∣∣∣ ≤ 2

γT1

⇒ favors large γ. But, the higher γ, the more frequent are the infinite intervals.
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Approach

Aim: derive theoretical results on the average length of ACI depending on γ

↪→ guideline for choosing γ

Approach:

• consider extreme cases (useful in an online context) with simple theoretical
distributions

1. exchangeable

2. Auto-Regressive case (AR(1))

• assume the calibration is perfect, to rely on Markov Chain Theory

↪→ the empirical quantiles correspond to the exact scores’ quantile distribution Q
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Theoretical analysis of ACI’s length: exchangeable case

Define:

• L(αt) = 2Q(1− αt) the adaptive algorithm’s interval’s length at time t,

• L0 = 2Q(1− α) the non-adaptive algorithm’s interval’s length (i.e. γ = 0).

Limit length under exchangeability (Z., Féron, Goude, Josse, and Dieuleveut, 2022)

Assume the scores are exchangeable with quantile function Q perfectly esti-

mated at each time, and other technical assumptions.

Then, for all γ > 0, (αt)t>0 forms a Markov Chain, that admits a stationary

distribution πγ , and

1

T

T∑
t=1

L(αt)
a.s.−→

T→+∞
Eπγ [L]

not.
= Eα̃∼πγ [L(α̃)].

Moreover, as γ → 0, Eπγ [L] = L0 + Q ′′(1− α)γ2α(1− α) + O(γ3/2).
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Theoretical and numerical analysis of ACI’s length: AR(1) case

Convergence under AR(1) (Z., Féron, Goude, Josse, and Dieuleveut, 2022)

Assume the residuals follow an AR(1) process: ε̂(t+1) = ϕε̂(t) + ξ(t+1) with

(ξ(t))t i.i.d. random variables and other technical assumptions, we have:

1

T

T∑
t=1

L(αt)
a.s.−→

T→+∞
Eπγ,ϕ [L]

not.
= Eα̃∼πγ,ϕ [L(α̃)].
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Figure 2: γ∗ minimizing the average length for each ϕ.
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AgACI: adaptive wrapper around ACI

Online aggregation under expert advice (Cesa-Bianchi and Lugosi, 2006) computes

an optimal weighted mean of experts.

AgACI performs 2 independent aggregations: one for each bound (the upper and

lower ones), based on the corresponding pinball losses.
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AgACI: adaptive wrapper around ACI, scheme (upper bound)
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Experimental take-away messages

• Synthetic data with ARMA noise (Z., Féron, Goude, Josse, and Dieuleveut, 2022)

◦ Benchmarks are not robust to the increase in the temporal dependence;

◦ ACI is robust, maintaining validity, with an appropriate γ;

◦ AgACI is robust, maintaining validity, not the smallest.

• French electricity spot prices
◦ 2019: AgACI provides validity with a reasonable efficiency;

(Z., Féron, Goude, Josse, and Dieuleveut, 2022)

◦ 2020 and 2021: AgACI fails to ensure validity, and the various forecasting

models considered behave differently. (Dutot∗, Z.∗, Féron, and Goude, 2024)

2016 2017 2018 2019 2020 2021 2022
Date

0

200

400

600

800

S
p
ot

p
ri
ce

(€
/M

W
h
)

1

21 / 37



Improving adaptiveness for high non-stationarity (Dutot∗, Z.∗, Féron, and Goude, 2024)

Online aggregation of various AgACI, each of them being trained with different

underlying forecasting models, for each bound independently.

3 Retrieves validity even in the most hazardous period of 2020 and 2021.

3 Analyzing its weights provides interpretability.
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Highlights and perspectives

Aggregating the two bounds independently (as in AgACI and beyond):

3 Allows more flexible and adaptive behavior in practice, catching the varying

nature of the predictive distribution tails

7 Prevents from obtaining theoretical guarantees (by opposition to Gibbs and

Candès, 2022)

↪→ Weaken the objective and consider a more practical theoretical aim?
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Missing values are ubiquitous and challenging

Data:
(
X (k),M(k),Y (k)

)n
k=1

Y X1 X2 X3

22.42 0.55 0.67 0.03

8.26 0.72 0.18 0.55

19.41 0.60 0.58 NA

19.75 0.54 0.43 0.96

7.32 NA 0.19 NA

13.55 0.65 0.69 0.50

20.75 NA NA 0.61

9.26 0.89 NA 0.84

9.68 0.963 0.45 0.65

Mask M =

(M1 M2 M3)

0 0 0

0 0 0

0 0 1

0 0 0

1 0 1

0 0 0

1 1 0

0 1 0

0 0 0

↪→ 2d potential masks.

↪→ M can depend on X or Y .

⇒ Statistical and computational challenges.
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Supervised learning with missing values: impute-then-regress

Impute-then-regress procedures are widely used.

1. Replace NA using an imputation function (e.g. the mean), noted φ.

-1 -10 6 0

4 -2 2

5 1 2

0 1

-1 -10 6 0

4 -2 2

5 1 2

0 1

-4.5

1

-4.5

2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed

data:

φ
(
X

(k)

obs(M(k))
,M(k)

)
︸ ︷︷ ︸

U(k)=imputed X (k)

,Y (k)


n

k=1

.

↪→ we consider an impute-then-regress pipeline in this work.
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Goals of predictive uncertainty quantification with missing values

Goal: predict Y (n+1) with confidence 1− α, i.e. build the smallest Cα such that

for any D and any associated Dexch(n+1):

Marginal Validity (MV)

PDexch(n+1)

{
Y (n+1) ∈ Cα

(
X (n+1),M(n+1)

)}
≥ 1− α. (MV)

Mask-Conditional-Validity (MCV)

PDexch(n+1)

{
Y (n+1) ∈ Cα

(
X (n+1),M(n+1)

)
|M(n+1)

} a.s.
≥ 1− α. (MCV)

M forms meaningful categories

↪→ Even if M⊥⊥X and Y⊥⊥M |X (e.g. equity standpoint)
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CP is marginally valid (MV) after imputation

Exchangeability after imputation (Z., Dieuleveut, Josse and Romano, 2023)

Assume
(
X (k),M(k),Y (k)

)n
k=1

are i.i.d. (or exchangeable).

Then, for any missing mechanism, for almost all imputation functiona φ:(
φ
(
X

(k)

obs(M(k))
,M(k)

)
,Y (k)

)n
k=1

are exchangeable.

aEven if the imputation is not accurate, the guarantee will hold.

⇒ CQR, and Conformal Prediction, applied on an imputed data set still enjoys

marginal guarantees4:

PDexch(n+1)

{
Y (n+1) ∈ Ĉα

(
X (n+1),M(n+1)

)}
≥ 1− α.

4The upper bound also holds under continuously distributed scores.
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CQR is marginally valid on imputed data sets

Y = βTX + ε, β = (1, 2,−1)T , X and ε Gaussian.
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CQR (marginal validity)

1
3 Marginal (i.e. average) coverage (MV) is indeed recovered!
7 Mask-conditional-validity (MCV) is not attained

↪→ Missing values induce heteroskedasticity

(supported by theory under (non-)parametric assumptions)
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Conformalization step is independent of the important variable: the mask!

Observation: the α-correction term is computed

among all the data points, regardless of their mask!

0 2 4
X

−4

−2

0

2

Y

1Warning: 2d possible masks

⇒ Splitting the calibration set by mask is infeasible (lack of data)!

-1 -10 6 1

4 -2 2

5 1 1 0

0 1

3 6 0 1

Test point

-1 -10 6 1

5 1 1 0

Calibration set used

Initial calibration set

3 1

Test point

0 1

Calibration set used

Question: for low probability masks (i.e. DM(m) := PD (M = m) is small), is it

possible to learn from the predictive distributions conditional on other masks?
29 / 37



Introduction

Time series

Missing values

Goals and challenges for predictive uncertainty quantification

Is MCV a too lofty goal?!

Achieving MCV under M⊥⊥X and Y⊥⊥M |X

Conclusion and perspectives



Fully distribution-free MCV is necessarily uninformative

General MCV hardness result (Z., Josse, Romano and Dieuleveut, 2024)5

If any Ĉα is distribution-free MCV then for any distribution D, for any mask

m such that DM(m) := PD(M = m) > 0, it holds:

PD⊗(n+1)

(
mes

(
Ĉα
(
X (n+1),m

))
=∞

)
≥ 1− α−∆m,n ≥ 1− α−DM(m)

√
n + 1.

Irreducible term: consider Ĉα outputting Y with probability 1−α and ∅ otherwise.

∆m,n term: smaller than DM(m)
√
n + 1

↪→ gets negligible (making the lower bound nearly 1− α) only for low probability

masks compared to n.

5An analogous statement is also available for the classification framework.
30 / 37



Restricting the link between M and (X or Y ) does not allow informative MCV

M ⊥⊥ X hardness result (Z., Josse, Romano and Dieuleveut, 2024)

If any Ĉα is MCV under M⊥⊥X , then for any distribution D such that M⊥⊥X ,

for any mask m such that DM(m) > 0, it holds:

PD⊗(n+1)

(
mes

(
Ĉα
(
X (n+1),m

))
=∞

)
≥ 1− α−DM(m)

√
n + 1.

Y⊥⊥M |X hardness result (Z., Josse, Romano and Dieuleveut, 2024)

If any Ĉα is MCV under Y ⊥⊥M |X , then for any distribution D such that

Y⊥⊥M |X , for any mask m such that 1√
2
≥ DM(m) > 0, it holds:

PD⊗(n+1)

(
mes

(
Ĉα
(
X (n+1),m

))
=∞

)
≥ 1− α− 2DM(m)

√
n + 1.

⇒ Need to restrict both the link between M and X , as well as between M and Y .

Analogous statements are also available for the classification framework.
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CP-MDA-Nested? (Missing Data Augmentation): three instances

Overmasked calibration set

-1 1 0

4 2 1

5 3

0 1 -2

-1 1 0

4 2 1

5 3

0 1 -2

Temporary test points

-1 1 0

4 2 1

0 1 -2

3 1 2

3 1 2

3 2

3 1 2

3 1 2

3 1 2

3 2

3 1 2

3 1 2

3 1 2

3 1 2
keep same mask

keep arbitrary selection

keep all points

Initial calibration set

-1 -10 6 1 0

4 -2 2 1

5 1 1 3

0 1 -2

-3 0

Test point

3 1 2
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CP-MDA-Nested? achieves Mask-Conditional-Validity (MCV)

Mask-conditional-validity of CP-MDA-Nested?

(Z., Josse, Romano and Dieuleveut, 2024)

Under the assumptions that:

• M⊥⊥X ,

• Y⊥⊥M |X ,

•
(
X (k),M(k),Y (k)

)n+1

k=1
are i.i.d.,

• the subsampling scheme is independent of
(
X (k),Y (k)

)n+1

k=1
,

then, for almost all imputation function, CP-MDA-Nested? reaches (MCV) at

the level 1− 2α, that is:

PD⊗(n+1)

{
Y (n+1) ∈ Ĉα

(
X (n+1),M(n+1)

)
|M(n+1)

} a.s.
≥ 1− 2α.
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Experiments on M⊥⊥X and Y⊥⊥M |X Gaussian linear data in dimension 10
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1Figure 4: 40% of missing values

 CP-MDA-Exact outputs many infinite intervals on points with less than 6 NAs.

 Compared to CP-MDA-Nested, CP-MDA-Nested? selecting points with at most

2 more NAs reduces the length by:

• 5.5% marginally;

• 10% on fully observed points.

 Compared to CP-MDA-Nested, CP-MDA-Nested? selecting points with at most

2 more NAs reduces the length by:

• 9.5% marginally;

• Between 8.5% and 10% on points with 1 to 6 NAs.
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Experiments beyond independence

3 Under various M 6⊥⊥X (MAR and MNAR) mechanisms, CP-MDA-Nested?

maintains empirical MCV;

7 When Y 6⊥⊥M |X and the imputation is not accurate enough:

• CP-MDA-Nested? fails to empirically ensure MCV,

• with a loss of coverage that is more critical when subsampling.
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Introduction

Time series

Missing values

Conclusion and perspectives



Key messages and contributions

Part I: time series

. Impact of hyper-parameter on the intervals efficiency

. Methodologies for online forecasting with post-hoc predictive UQ

. Extensive benchmark on time series CP and French elec. spot prices

Part II: missing values

. Missingness and predictive uncertainty interplay’s characterization

. Methodology to achieve MCV

. Numerical experiments beyond the assumptions

Open-sourced introductive tutorial on CP, (to be) presented at:

. MASPIN days 2023, with C. Boyer,

. ENBIS 2023,

. UAI 2024, with A. Dieuleveut,

. ICML 2024, with A. Dieuleveut. 36 / 37



Perspectives

Some direct open directions include:

. Deeper investigation of practical time series CP (data sets, extremes, im-

proved model, interpertability, theoretical objective)

. Is it possible to informatively achieve MCV under Missing At Random and

Y⊥⊥M |X?

. Multidimensional predictive uncertainty quantification

Motivation: forecast multiple (correlated) electricity prices simultaneously

(e.g., different countries or market horizons)

Challenge: capture the multivariate uncertainty
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Thank you for your attention!

And many thanks to

Aymeric Dieuleveut Olivier Féron Yannig Goude Julie Josse

Claire Boyer Grégoire Dutot Yaniv Romano

and many others :)
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Updating the training and calibration sets

Theoretical analysis of ACI’s length

Numerical experiments

Missing Values



Generalizing beyond exchangeability in theory

Two major general theoretical results beyond exchangeability:

• Chernozhukov et al. (2018)

↪→ If the learnt model is accurate and the data noise is strongly mixing, then

CP is valid asymptotically 3

• Barber et al. (2022)

↪→ Quantifies the coverage loss depending on the strength of exchangeability

violation

P(Yn+1 ∈ Ĉα(Xn+1)) ≥ 1− α− average violation of exchangeability
by each calibration point

↪→ proposed algorithm: reweighting (again)!

e.g., in a temporal setting, give higher weights to more recent points.



Exchangeability does not hold in many practical applications

CP requires exchangeable data points to ensure validity

7 Covariate shift, i.e. LX changes but LY |X stays constant

(see e.g., Tibshirani et al., 2019)

7 Label shift, i.e. LY changes but LX |Y stays constant

(see e.g., Podkopaev and Ramdas, 2021)

7 Arbitrary distribution shift

(see e.g., Cauchois et al., 2020)

7

Possibly many shifts, not only one

(main focus of this presentation)



Recent developments

• Gibbs and Candès (2022) later on also proposes a method not requiring to

choose γ

• Bhatnagar et al. (2023) enjoys anytime regret bound, by leveraging tools from

the strongly adaptive regret minimization literature

• Feldman et al. (2023) extends ACI to general risk control

• Bastani et al. (2022) proposes an algorithm achieving stronger coverage guar-

antees (conditional on specified overlapping subsets, and threshold calibrated)

without hold-out set

• Angelopoulos et al. (2023) combines CP ideas with control theory ones, to

adaptively improve the predictive intervals depending on the errors structure

Non exhaustive references.
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How to adapt to time series?

Usual ideas from the time series literature:

• Consider an online procedure (for each new data, re-train and re-calibrate)

↪→ update to recent observations (trend impact, period of the seasonality,

dependence...)

• Use a sequential split

↪→ use only the past so as to correctly estimate the variance of the residuals (using

the future leads to optimistic residuals and underestimation of their variance)



Online sequential split conformal prediction (OSSCP)

t = T0 + T1
t = 0 t = T0

Test pointUnused data Proper training set Calibration set

Wisniewski et al. (2020); Kath and Ziel (2021); Zaffran et al. (2022)

↪→ tested on real time series
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Numerical analysis of ACI’s length: AR(1) case

Assume the residuals follow an AR(1) process: ε̂t+1 = ϕε̂t + ξt+1 with (ξt)t i.i.d.

random variables and other assumptions, we have:

1

T

T∑
t=1

L(αt)
a.s.−→

T→+∞
Eπγ,ϕ [L].
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Figure 5: Left: evolution of the mean length depending on γ for various ϕ. Right: γ∗

minimizing the average length for each ϕ.
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Data generation and simulation settings

Yt = 10 sin (πXt,1Xt,2) + 20 (Xt,3 − 0.5)2 + 10Xt,4 + 5Xt,5 + εt

where the Xt,· ∼ U([0, 1]) and εt is an ARMA(1,1) process:

εt+1 = ϕεt + ξt+1 + θξt ,

with ξt is a white noise of variance σ2.

• ϕ = θ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix σ to keep the variance Var(εt) constant to 10 (or 1).

• We use random forest as regressor.

• For each setting (pair variance and ϕ,θ):

◦ 300 points, the last 100 kept for prediction and evaluation,

◦ 500 repetitions,

⇒ in total, 100× 500 = 50000 predictions are evaluated.



Visualisation of the results
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Results: impact of the temporal dependence, ARMA(1,1), variance 10
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Summary

1. The temporal dependence impacts the validity.

2. Online is significantly better than offline.

3. OSSCP. Achieves valid coverage for ϕ and θ smaller than 0.9, but is not

robust to the increasing dependence.

4. EnbPI. Its validity strongly depends on the data distribution. When the

method is valid, it produces the smallest intervals. EnbPI V2 method should

be preferred.

5. ACI. Achieves valid coverage for every simulation settings with a well chosen

γ, or for dependence such that ϕ < 0.95. It is robust to the strength of the

dependence.

6. AgACI. Achieves valid coverage for every simulation settings, with good

efficiency.



Empirical evaluation of ACI sensitivity to γ and adaptive choice
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⇒ The more the dependence, the more sensitive to γ is ACI. Naive method (O):

smallest among valid ones in the past ⇒ accumulates error of the different ACI’s

versions. AgACI (F): encouraging preliminary results.



Empirical evaluation of ACI sensitivity to γ and adaptive choice, AR(1)
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Empirical evaluation of ACI sensitivity to γ and adaptive choice, MA(1)
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Results: impact of the temporal dependence, ARMA(1), variance 10, average

length after imputation
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Results: impact of the temporal dependence, AR(1) and MA(1), variance 10
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Results: impact of the temporal dependence, AR(1) and MA(1), variance 10,

average length after imputation
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Forecasting electricity prices with confidence in 2019

• Forecast for the year 2019.

• Random forest regressor.

• One model per hour, we concatenate the predictions afterwards.

↪→ 24 models

◦ yt ∈ R
◦ xt ∈ Rd , with d = 24 + 24 + 1 + 7 = 56

◦ 3 years for training/calibration, i.e. T0 = 1096 observations

◦ 1 year to forecast, i.e. T1 = 365 observations

24 prices of the day before

24 prices of the 7 days before

Forecasted consumption

Encoded day of the week



Performance on predicted French electricity Spot price for the year 2019
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Forecasting electricity prices with confidence in 2020 and 2021, various mod-

els
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Forecasting electricity prices with confidence in 2020 and 2021, linear models
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OSSCP-horizon

(a) OSSCP (b) OSSCP-horizon

Test pointUnused data Proper training set Calibration set



Forecasting electricity prices with confidence in 2020 and 2021, QRF models
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Forecasting electricity prices with confidence in 2020 and 2021, online aggre-

gation models
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Missing Values



Time Series

Missing Values

Missing values and predictive uncertainty interplay

CP-MDA-Nested?

Numerical experiments

Towards asymptotic individualized coverage



Missing values induce heteroskedasticity

Gaussian linear model

• Y = βTX + ε, ε ∼ N (0, σ2
ε) ⊥⊥ (X ,M), β ∈ Rd .

• for all m ∈ {0, 1}d , there exist µm and Σm such that

X |(M = m) ∼ N (µm,Σm).

↪→ oracle intervals: smallest predictive interval when the distribution of Y |(X ,M)

is known

Oracle int. under Gaussian lin. mod. (Z., Dieuleveut, Josse, and Romano, 2023)

L∗α(m) = 2× q
N (0,1)
1−α/2 ×

√
βTmis(m)Σm

mis|obsβmis(m) + σ2
ε .

• Even with an homoskedastic noise, missingness generates heteroskedasticity

• The uncertainty increases when missing values are associated with

larger regression coefficients (i.e. the most predictive variables)



Properties of isotonic predictive uncertainty

V (Xobs(M),M) := Var
(
Y |Xobs(M),M

)
V (Xobs(m),m)

a.s.
≤ V (Xobs(m′),m

′) for any m ⊂ m′,

(Var-1)

E
[
V (Xobs(M),M)|M = m

]
≤ E

[
V (Xobs(M),M)|M = m′

]
for any m ⊂ m′.

(Var-2)

IQβ,γ(Xobs(m),m)
a.s.
≤ IQβ,γ(Xobs(m′),m

′) for any m ⊂ m′,

(IQ-1)

E
[
IQβ,γ(Xobs(M),M)|M = m

]
≤ E

[
IQβ,γ(Xobs(M),M)|M = m′

]
for any m ⊂ m′.

(IQ-2)

Λ(Cα(Xobs(m),m))
a.s.
≤ Λ(Cα(Xobs(m′),m

′)) for any m ⊂ m′,

(Len-1)

E
[
Λ(Cα(Xobs(M),M))|M = m

]
≤ E

[
Λ(Cα(Xobs(M),M))|M = m′

]
for any m ⊂ m′.

(Len-2)



Results

Property

Setup
GLM homoske. GLM heteroske. M⊥⊥X and Y⊥⊥M |X

Variance Var-1 ����Var-1 Var-2 Var-2

Inter-quantile IQ-1 IQ-2

Length of Oracle PI Len-1 Len-2 Len-2



Univariate heteroskedastic Gaussian linear model

Unidimensional heteroskedasticity

Consider the following one-dimensional model:

• X ∼ N (0, σ2), σ ∈ R+;

• ξ ∼ N (0, τ2), τ ∈ R+, such that ξ ⊥⊥ X ;

• Y = βX + X ξ, with β ∈ R;

• M ∼ B(ρ), with ρ ∈ [0, 1], and M ⊥⊥ (X ,Y ).



Time Series

Missing Values

Missing values and predictive uncertainty interplay

CP-MDA-Nested?

Numerical experiments

Towards asymptotic individualized coverage



CP-MDA-Nested?

Input: i) Training set
{(

X (k),M(k),Y (k)
)}n

k=1
. ii) imputation algorithm I. iii)

learning algorithm A taking its values in F := YX×M. iv) calibration proportion

ρ ∈]0, 1]. v)
{
Tr,Cal,Φ, Â

}
the output of the splitting algorithm 1 ran on{{(

X (k),M(k),Y (k)
)}n

k=1
, I,A, ρ

}
. vi) conformity score function s (·, ·; f ) for

f ∈ F . vii) significance level α. viii) test point
(
X (n+1),M(n+1)

)
. ix) subsampled

set of calibration indices C̃al ⊆ Cal for k ∈ C̃al: M̃(k) = max(M(k),M(n+1))

ĈMDA-Nested?

α

(
X (n+1),M(n+1)

)
:=
{
y ∈ Y : (1− α)(1 + #C̃al) >∑

k∈Cal

1
{
s
((

X (k), M̃(k)
)
,Y (k); Â (Φ (·, ·) , ·)

)
< s

((
X (n+1), M̃(k)

)
, y ; Â (Φ (·, ·) , ·)

)}}



CP-MDA-Nested? inner algorithm (split and fit)

Algorithm 1 Split and train

Input: Imputation algorithm I, learning algorithm A taking its values in F :=

YX×M, training set
{(

X (k),M(k),Y (k)
)}n

k=1
, calibration proportion ρ ∈]0, 1]

Output: Splitted sets of indices Tr and Cal, imputation function Φ, fitted predictor

Â

1: Randomly split {1, . . . , n} into 2 disjoint sets Tr & Cal of sizes #Tr = (1−ρ)n

and #Cal = ρn

2: Fit the imputation function: Φ(·, ·)← I
({(

X (k),M(k)
)
, k ∈ Tr

})
3: Fit the learning algorithm A: Â (·, ·)← A

({(
Φ
(
X (k),M(k)

)
,M(k)

)
, k ∈ Tr

})



CP-MDA-Nested? is Marginally Valid (MV)

CP-MDA-Nested? marginal validity (Z., Josse, Romano, and Dieuleveut, 2024)

Under the assumptions that:

•
(
X (k),M(k),Y (k)

)n+1

k=1
are exchangeable,

• the subsampling scheme keeps all of the calibration points,

then, for almost all imputation function, CP-MDA-Nested? reaches (MV) at

the level 1− 2α, that is:

PDexch(n+1)

{
Y (n+1) ∈ Ĉα

(
X (n+1),M(n+1)

)}
≥1− 2α.

3 Any missing mechanism (no need to assume M ⊥⊥ X )

3 Does not require (Y ⊥⊥ M) |X
7 Marginal guarantee

Proof element: based on Jackknife+ ideas (Barber et al., 2021).

Leaving-out the k-th data point to predict on the l-th data point

↔
Apply the mask of the k-th data point to the l-th data point on which you predict



MDA-Exact achieves Mask-Conditional-Validity (MCV)

CP-MDA-Exact achieves exact MCV (Z., Dieuleveut, Josse, and Romano, 2023)

If:

•
(
X (k),M(k),Y (k)

)n+1

k=1
are i.i.d.,

• M⊥⊥X ,

• Y⊥⊥M |X ,

then, for almost all imputation function, CP-MDA-Exact is such that for any

m ∈ {0, 1}d such that PD(M = m) > 0:

PD⊗(n+1)

{
Y (n+1) ∈ Ĉα

(
X (n+1),M(n+1)

)
|M(n+1) = m

}
≥ 1− α,

and if additionally the scores are almost surely distinct:

PD⊗(n+1)

{
Y (n+1) ∈ Ĉα

(
X (n+1),M(n+1)

)
|M(n+1) = m

}
≤ 1− α + 1

#Calm+1 .



Time Series

Missing Values

Missing values and predictive uncertainty interplay

CP-MDA-Nested?

Numerical experiments

Towards asymptotic individualized coverage



Before more experiments, visualisation

Le
ng

th
~ 

ef
fic

ie
nc

y

Coverage
~ validity



Time Series

Missing Values

Missing values and predictive uncertainty interplay

CP-MDA-Nested?

Numerical experiments

M⊥⊥X and Y⊥⊥M |X

Beyond independence

Real data: TraumaBase®

Towards asymptotic individualized coverage



Semi-synthetic experiments
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MAR, correlation coefficient of 0.8
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MAR, independent features
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MNAR self-masked, correlation coefficient of 0.8
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MNAR self-masked, independent features
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MNAR quantile censorship, correlation coefficient of 0.8
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MNAR quantile censorship, independent features
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Y 6⊥⊥M |X , correlation coefficient of 0.8 (d = 3)

• ε ∼ N (0, 1) ⊥⊥ (X ,M),

• X ∼ N (µ,Σ), µ = (1, 1, 1)T , Σ = ϕ(1, 1, 1)T (1, 1, 1) + (1− ϕ)Id , ϕ = 0.8,

• Mi ∼ B(0.2) for any i ∈ J1, 3K, independently from X and ε,

• Y = X11 {M1 = 0}+ 2X11 {M1 = 1}+ 3X21 {M2 = 1,M3 = 1}+ ε.
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Y 6⊥⊥M |X , independent features (d = 3)

• ε ∼ N (0, 1) ⊥⊥ (X ,M),

• X ∼ N (µ,Σ), µ = (1, 1, 1)T , Σ = ϕ(1, 1, 1)T (1, 1, 1) + (1− ϕ)Id , ϕ = 0,

• Mi ∼ B(0.2) for any i ∈ J1, 3K, independently from X and ε,

• Y = X11 {M1 = 0}+ 2X11 {M1 = 1}+ 3X21 {M2 = 1,M3 = 1}+ ε.
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TraumaBase®: decision support for trauma patients

• 30 hospitals

• More than 30 000 trauma patients

• 4 000 new patients per year

• 250 continuous and categorical variables

↪→ Many useful statistical tasks

Predict the level of blood platelets upon arrival at hospital, given 7 pre-hospital

features.

These covariates are not always observed.



Data set description i

• Age: the age of the patient (no missing values);

• Lactate: the conjugate base of lactic acid, upon arrival at the hospital

(17.66% missing values);

• Delta hemo: the difference between the hemoglobin upon arrival at hospital

and the one in the ambulance (23.82% missing values);

• VE: binary variable indicating if a Volume Expander was applied in the

ambulance. A volume expander is a type of intravenous therapy that has the

function of providing volume for the circulatory system (2.46% missing

values);

• RBC: a binary index which indicates whether the transfusion of Red Blood

Cells Concentrates is performed (0.37% missing values);



Data set description ii

• SI: the shock index. It indicates the level of occult shock based on heart rate

(HR) and systolic blood pressure (SBP), that is SI = HR
SBP , upon arrival at

hospital (2.09% missing values);

• HR: the heart rate measured upon arrival of hospital (1.62% missing values).



Real data experiment: TraumaBase®, critical care medicine

0.90 0.92 0.94
Average coverage

1.2

1.4

1.6

1.8

A
ve
ra
ge

le
n
gt
h

CQR
CQR-MDA-Exact
CQR-MDA-Nested

Marginal
Mask-type

1



Time Series

Missing Values

Missing values and predictive uncertainty interplay

CP-MDA-Nested?

Numerical experiments

Towards asymptotic individualized coverage



Consistency of a universal quantile learner after imputation

Let Φ be an imputation function chosen by the user.

Denote g∗β,Φ ∈ argmin
g :Rd→R

E [ρβ(Y − g ◦ Φ(X ,M))] := Rβ,φ(g).

Comparison with: argmin
f

E [ρβ(Y − f (X ,M))] (informal).

Pinball-consistency of an universal learner (Z., Dieuleveut, Josse, and Romano, 2023)

For almost all C∞ imputation function Φ, the function g∗β,Φ ◦ Φ is Bayes

optimal for the pinball-risk of level β.

↪→ any universally consistent algorithm for quantile regression trained on the

data imputed by Φ is pinball-Bayes-consistent.

This is an extension of the result of ?.



Asymptotic conditional coverage of a universal quantile learner

Corollary (Z., Dieuleveut, Josse, and Romano, 2023)

For any missing mechanism, for almost all C∞ imputation function Φ, if

FY |(Xobs(M),M) is continuous, a universally consistent quantile regressor trained

on the imputed data set yields asymptotic conditional coverage.

↪→ P(Y ∈ Ĉα(x)|X = x ,M = m) ≥ 1− α for any m ∈M and any x ∈ Rd ,

asymptotically with a super quantile learner.
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